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Abstract—Two efficient and convenient syntheses of N-Cbz and N-Fmoc N-methyl serine and threonine are described. The amino
acid side-chain alcohol can be protected as a TBDMS ether in very good yield or left free, followed by the formation and
subsequent reduction of the corresponding oxazolidinone. © 2001 Published by Elsevier Science Ltd.

N-Methyl amino acids are important constituents of
many biologically active peptides1 and are often critical
for their biological activity. The assembly of such pep-
tides depends on the availability of N-methyl amino
acid precursors as direct N-methylation of peptide
bonds is not selective.

There are a number of methods to prepare N-methyl
amino acids with unfunctionalized side chains.2 How-
ever, these methods are not adequate for the N-methyl-
ation of the �-hydroxy amino acids serine and
threonine, giving mixtures of products including O-
methylated and/or dehydrated derivatives and partial
racemization.2,3 Freidinger and co-workers reported a
method in which N-Fmoc amino acids were reacted
with paraformaldehyde in the presence of catalytic p-
TSA to form oxazolidinones4 that are subsequently
reduced5 to N-methylated amino acids with triethyl-
silane–TFA.6 The O-benzyl derivative of Fmoc N-
methyl serine was prepared in excellent yields by this
method. However, the O-benzyl protection scheme
requires commercially expensive N-protected O-benzyl-
serine or threonine, and if further elaboration of the
side-chain function is desired an additional deprotec-

tion step is required precluding the use of Cbz as the
N-amino protecting group.

We report here the preparation of N-protected N-
methyl serine and threonine by an analogous scheme
but with the t-butyl dimethyl silyl (TBDMS) protection
of the side-chain alcohol.7 The (O-TBDMS) N-pro-
tected serine and threonine are reacted with formalde-
hyde and reduction of the corresponding oxazolidinone
gives the desired N-methyl derivative with simultaneous
removal of the TBDMS protecting group. We also
describe an improved procedure to prepare the O-
TBDMS derivatives of serine and threonine, giving
excellent yields with both N-Cbz and N-Fmoc protect-
ing groups.

Our first attempt to obtain N-methyl �-hydroxy amino
acids involved the formation of the oxazolidinone with
paraformaldehyde under standard conditions without
protection of the hydroxyl function (Scheme 1). The
desired N-Cbz oxazolidinone 1a and 1b is indeed
obtained in 25–30% yield but the major product is the
corresponding oxazoline 2a and 2b (60–65%), corre-

Scheme 1. (i) (CH2O)n, p-TsOH (0.1 equiv.), reflux in toluene.
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Scheme 2. (i) TBDMS-Cl (1.1 equiv.), imidazole (2 equiv.), DMF; (ii) (for 3c–d) Fmoc-OSu (1 equiv.), Na2CO3, dioxane/H2O
(1:1) (*yield for two steps); (iii) (CH2O)n, TsOH (0.1 equiv.), reflux in toluene, (iv) Et3SiH (3–10 equiv.), TFA/CHCl3, rt, 3–5 days.

sponding to recently reported results.3 With the N-
Fmoc derivative the yield of the oxazolidinone 1c and
1d is better (40–45%). In each case the mixture of
products can be separated by simple base/acid extrac-
tion. The oxazolidinones 1a–d can be reduced in 90–
95% yield using the triethylsilane/TFA conditions
reported by Freidinger and co-workers.6

We have examined a similar reaction scheme with
protection of the hydroxyl group as O-TBDMS ether.
The O-TBDMS protecting group is introduced to Cbz-
serine and Cbz-threonine to give the corresponding
products 3a (90%) and 3b (82%) via reaction with
TBDMS-Cl and imidazole in DMF for 2–3 days8–10

(Scheme 2). The products are readily separated by
simple base/acid extraction, and no chromatography is
needed.11,12

In contrast, Fmoc-serine and Fmoc-threonine react
extremely slowly under the same conditions and give a
very low yield of product (20–40%) along with partial
loss of Fmoc protecting group.10 The crude products
are difficult to purify by acid/base extraction and chro-
matography is necessary. Increasing the amount of
TBDMS-Cl (5 equiv.) and imidazole (3 equiv.) does not
improve the yield. The protection sequence was
reversed such that the TBDMS group was first intro-
duced to L-serine and L-threonine, followed by addition
of the Fmoc group (Scheme 2). The reaction of L-serine
with TBDMS-Cl (1.1 equiv.) and imidazole (2.2 equiv.)
in DMF gives the ether in excellent yield (90%),13 while
L-threonine gives a very good yield (77%) with
TBDMS-Cl (2 equiv.) and imidazole (3 equiv.). The
Fmoc protecting group was subsequently introduced in
a standard procedure to give the corresponding (O-
TBDMS) protected Fmoc-serine 3c and Fmoc-
threonine 3d with high yields (90–98%). This approach
avoids column purification and provided higher overall
yield than the literature method.10

The O-TBMDS amino acids 3a–d were refluxed with
paraformaldehyde and catalytic p-TsOH in toluene
using a Dean–Stark apparatus to give the oxazolidi-
none 5a–d in very good yields.14 Deprotection of the
hydroxyl groups and reduction of the oxazolidinone
5a–d is achieved in one-step using TFA and triethyl-
silane giving protected N-methyl amino acids 6a–d in
excellent yields.15

Two alternative methods to the Freidinger procedure
are described for the generation of N-protected N-
methyl �-hydroxy amino acids. The first method, with-
out protection of the hydroxyl group, provides a
shorter route to the N-Fmoc protected substrates while
the second method with O-TBDMS protection works
best for the N-Cbz group, and provides the highest
yields overall. In each case, purification is convenient at
each step simplifying scale-up. The choice between the
two methods will thus be dependent on the nature of
the �-hydroxy amino acid and which N-protecting
group is desired.
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